Kähler differential algebras for 0-dimensional schemes
نویسندگان
چکیده
منابع مشابه
Nonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملDifferential Graded Schemes I: Perfect Resolving Algebras
We introduce perfect resolving algebras and study their fundamental properties. These algebras are basic for our theory of differential graded schemes, as they give rise to affine differential graded schemes. We also introduce étale morphisms. The purpose for studying these, is that they will be used to glue differential graded schemes from affine ones with respect to an étale topology.
متن کاملnonstandard finite difference schemes for differential equations
in this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (nsfds). numerical examples confirming then efficiency of schemes, for some differential equations are provided. in order toillustrate the accuracy of the new nsfds, the numerical results are compared with s...
متن کاملStrongly homotopy algebras of a Kähler manifold
It is shown that any compact Kähler manifold M gives canonically rise to two strongly homotopy algebras, the first one being associated with the Hodge theory of the de Rham complex and the second one with the Hodge theory of the Dolbeault complex. In these algebras the product of two harmonic differential forms is again harmonic. If M happens to be a Calabi-Yau manifold, there exists a third st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2018
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2017.12.023